合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 質(zhì)量分數(shù)對納米流體表面張力、霧化模式的影響
> 不同配方的水性氟丙樹脂涂料涂膜合成、性能指標
> 單純陰離子-非離子表面活性劑在不同的礦化度下的界面張力
> 新型十六烷基胺無堿表面活性劑的合成、界面性能及復(fù)配性能(二)
> 油脂不飽和度對于蛋白質(zhì)界面特性與乳液穩(wěn)定性的影響
> 基于藥液表面張力測定估算蘋果樹最大施藥液量的方法(四)
> 溶液針鐵礦法沉鐵方法,如何確定表面張力等參數(shù)值
> 無機粒子對TPAE界面張力、發(fā)泡、抗收縮行為的影響(一)
> 基于黃芪膠、指甲花提取物制備納米天然表面活性劑的界面張力測量(一)
> 表面張力儀應(yīng)用:研究活性磁化水對無煙煤塵的濕潤作用(一)
推薦新聞Info
-
> 無機鹽濃度對HPAM不同復(fù)配體系降低界面張力能力的影響(二)
> 無機鹽濃度對HPAM不同復(fù)配體系降低界面張力能力的影響(一)
> 烷基二甲苯磺酸鹽表面活性劑界面張力、界面性能測定
> 不同溫度對氫氟醚HFE7000、HFE7200表面張力和黏度影響(二)
> 不同溫度對氫氟醚HFE7000、HFE7200表面張力和黏度影響(一)
> R1336mzz(Z))純質(zhì)與POE潤滑油組成的混合物的表面張力測定
> Sb合金元素對鋅液與X80鋼表面張力、潤濕性及界面反應(yīng)的影響——結(jié)果與分析
> Sb合金元素對鋅液與X80鋼表面張力、潤濕性及界面反應(yīng)的影響——實驗
> 液氫、液氧等低溫推進劑表面張力與內(nèi)角自流現(xiàn)象的關(guān)系
> 高沸點表面活性劑對納米LiBr溶液表面張力沸騰溫度的影響(下)
正丁醇水溶液表面張力的測定原理及計算過程
來源:大學(xué)化學(xué) 瀏覽 1644 次 發(fā)布時間:2024-06-13
借助MATLAB工程計算平臺,通過程序設(shè)計完成了“正丁醇水溶液表面張力的測定”應(yīng)用軟件的開發(fā)。在完成錄入壓差實驗數(shù)據(jù)后,不僅可以自動計算和填入溶液的表面張力,還能夠?qū)崿F(xiàn)溶液表面張力與濃度定量關(guān)系的希斯科夫斯基經(jīng)驗方程(Szyszkowski′s equation)中待估參數(shù)的求解,并用以求導(dǎo)供給吉布斯公式計算溶液的吸附量,進而推算溶液飽和吸附量和正丁醇分子的截面積。軟件的操作過程簡便、直觀、高效,避免了人工數(shù)據(jù)處理、繪圖的煩瑣和人為誤差,可提高實驗結(jié)果的準確性和重現(xiàn)性。
1、表面張力測定原理
表面張力是流體的重要物性數(shù)據(jù),與諸多工業(yè)領(lǐng)域應(yīng)用聯(lián)系密切,如化工傳質(zhì)分離、食品藥品加工、礦物浮選、制冷工程等,但表面張力無法直接通過熱力學(xué)微分關(guān)系式從狀態(tài)方程導(dǎo)出,精確可靠的表面張力數(shù)據(jù)只能通過實驗精密測量得到,常用方法包括毛細管上升法、最大氣泡壓力法、掛環(huán)法、滴體積法等靜力學(xué)法和震蕩射流法、毛細管波法等動力學(xué)法[1]。
圖1表面張力的泡壓法測定原理圖
由于最大氣泡壓力法的器材易得,且易于學(xué)生理解表面張力的原理,因而一直是教學(xué)中測定液體表面張力的一種常用方法[2]。如圖1所示,測定時將一根毛細管插入待測液體內(nèi)部,從管中緩慢地通入惰性氣體對其內(nèi)的液體施以壓力,使管端形成氣泡逸出。當所用的毛細管管徑較小時,可以假定所產(chǎn)生的氣泡是球面的一部分;但是在氣泡生成及發(fā)展過程中,氣泡的曲率半徑會隨惰性氣體的壓力變化而改變。當氣泡的形狀恰為半球形時,氣泡的曲率半徑最小(即毛細管半徑R),此時根據(jù)Laplace方程,管內(nèi)外壓差達最大,其值Δpmax=p-ρgh可由差壓計測量得到[3]。利用最大壓差和毛細管半徑即可計算表面張力σ:
若采用同一支毛細管和差壓計,在相同溫度下測定已知表面張力的液體(如25℃蒸餾水,σ0=71.97mN·m-1)在毛細管中的最大壓差Δp0,max,則有:
針對實驗采集與計算獲得有限多個不同濃度c下的表面張力σ,傳統(tǒng)的數(shù)據(jù)處理方法是手工繪制這些離散點的趨勢曲線,并求出曲線上指定幾個點的切線斜率,進而求算表面吸附量。然而,手工圖解作切線這一步的誤差較大,結(jié)果重復(fù)性差,難以得到準確的結(jié)果。對此,本文介紹在物理化學(xué)實驗“正丁醇水溶液表面張力的測定”中,借助MATLAB工程計算平臺[5],選擇希斯科夫斯基關(guān)聯(lián)方程(Szyszkowski′s equation),經(jīng)由少數(shù)測量數(shù)據(jù)點關(guān)聯(lián)與求解正丁醇溶液表面張力和濃度之間的定量關(guān)系數(shù)學(xué)模型,并借此求算曲線上任意指定濃度下的切線斜率,進而求算該濃度下的表面吸附量,以提高數(shù)據(jù)處理的效率和質(zhì)量。
2、實驗部分
2.1儀器及試劑
儀器:AF-02型數(shù)字式微壓測量儀,數(shù)控恒溫槽,5mL和10mL移液管各一支,堿式滴定管1支,50mL容量瓶9個,樣品管1個,毛細管1個,抽氣瓶1個,錐形瓶1個,玻璃漏斗1個。
試劑:正丁醇(A.R.)及其不同濃度的標準溶液。
2.2實驗步驟
①用體積法準確配置濃度為0.025、0.050、0.075、0.10、0.15、0.20、0.25mol/L的正丁醇水溶液各50mL。
②如圖2示,調(diào)節(jié)恒溫槽的溫度在25℃,打開AF-02型數(shù)字式微壓式測量儀的電源,預(yù)熱20min。
圖2表面張力測定的實驗裝置
③先用洗液洗凈大試管與毛細管,再用自來水和蒸餾水洗凈;在大試管中注入適量蒸餾水,使毛細管端口剛好與液面垂直相切;將大試管安裝在恒溫水溶液內(nèi),用小漏斗給抽氣瓶裝滿自來水。
④連接好裝置,使其無漏氣。在體系通大氣的條件下按校零按鈕,使顯示器值為0.000kPa。
⑤測定蒸餾水的Δp0,max。打開抽氣瓶的活塞,使瓶內(nèi)水緩慢滴出,導(dǎo)致大試管逐步減壓,待氣泡形成速度穩(wěn)定(約5~10秒出一個氣泡)后,讀出氣泡脫出瞬間的Δp0,max;連續(xù)讀3次,取平均值。
⑥按照上述方法測定不同濃度正丁醇溶液的Δpmax值。不同溶液測定時須按低濃度到高濃度的次序測定;測定每一樣品時只需要用同樣濃度的溶液淌洗3次即可,并對測量數(shù)據(jù)進行記錄(例見表1)。
⑦實驗完畢,清洗玻璃儀器,整理實驗臺。
表1不同濃度正丁醇水溶液的表面張力測定數(shù)據(jù)
3、實驗數(shù)據(jù)處理及MATLAB實現(xiàn)
3.1表面張力的希斯科夫斯基經(jīng)驗方程
考慮到正丁醇系短鏈醇、醛、酮、酸、胺等第二類表面活性物質(zhì),在低濃度下其表面張力隨濃度增大在起始時降得較快、隨后呈減慢的特點,適宜選用希斯科夫斯基經(jīng)驗方程來擬合溶液表面張力σ與溶液濃度c之間的非線性關(guān)系[6]。
式中σ0為溶劑蒸餾水的表面張力,α和β為物系待估計的模型參數(shù)。
3.2飽和吸附量和溶質(zhì)分子截面積的計算
在一定溫度下,吸附量Γ與溶液濃度c的關(guān)系可由Langmuir單分子層等溫吸附式表示[7]。
式中N為阿伏加德羅常數(shù)。
3.3用MATLAB實現(xiàn)表面張力及表面吸附量的計算
圖3所示的“正丁醇水溶液表面張力的測定”實驗數(shù)據(jù)處理軟件由4個單元模塊構(gòu)成:①實驗數(shù)據(jù)錄入和溶液表面張力的程序自動計算;②表面張力與濃度關(guān)聯(lián)的希斯科夫斯基經(jīng)驗方程的參數(shù)估計與圖形繪制;③基于吉布斯公式完成溶液表面吸附量的計算;④飽和吸附量的線性回歸求解及正丁醇分子截面積的計算。
在第一步的數(shù)據(jù)錄入表格過程中,當完成第一行c=0.0的蒸餾水3次壓差平行測定數(shù)據(jù)后,軟件將自動完成其平均壓差的計算和自動填充,然后在錄入物性手冊中查得25℃蒸餾水的表面張力為0.07197N·m-1,毛細管常數(shù)λ將由程序算出,并作為程序內(nèi)存變量用于數(shù)據(jù)表格中不同濃度溶液的表面張力σ的計算。
4、結(jié)論
正丁醇是表面活性物質(zhì),其表面吸附量隨溶液濃度增大升高,并最終趨于飽和吸附。在本實驗的數(shù)據(jù)處理上,選用希斯科夫斯基經(jīng)驗方程進行關(guān)聯(lián)與擬合,通過Gibbs吸附等溫式計算溶液吸附量,通過線性回歸計算飽和吸附量,計算結(jié)果符合理論情況,可以較好地反映正丁醇溶液的特性。另外,在數(shù)據(jù)處理的最后步驟中,正丁醇分子截面積的計算結(jié)果也與文獻值吻合較好,能滿足實驗精度要求。
基于MATLAB工程計算平臺開發(fā)設(shè)計的“正丁醇水溶液表面張力的測定”應(yīng)用軟件可用于進行實驗數(shù)據(jù)計算和繪圖,可以快速、客觀地得到實驗結(jié)果,避免了手動作圖的主觀性和人為誤差。